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Abstract A Steiner quadruple system of order v is an ordered pair (X, B), where X is
a set of cardinality v, and B is a set of 4-subsets of X , called blocks, with the property
that every 3-subset of X is contained in a unique block. Such designs exist if and only if
v ≡ 2, 4 ( mod 6). The first and second proofs of this result were given by Hanani in 1960 and
in 1963, respectively. All the existing proofs are rather cumbersome, even though simplified
proofs have been given by Lenz in 1985 and by Hartman in 1994. To study Steiner quadruple
systems, Hanani introduced the concept of H-designs in 1963. The purpose of this paper is
to provide an alternative existence proof for Steiner quadruple systems via H-designs of type
2n . In 1990, Mills showed that for n > 3, n �= 5, an H-design of type gn exists if and only if
ng is even and g(n − 1)(n − 2) is divisible by 3, where the main context is the complicated
existence proof for H-designs of type 2n . However, Mill’s proof was based on the existence
result of Steiner quadruple systems. In this paper, by using the theory of candelabra systems
and H-frames, we give a new existence proof for H-designs of type 2n independent of the
existence result of Steiner quadruple systems. As a consequence, we also provide a new
existence proof for Steiner quadruple systems.
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1 Introduction

A Steiner quadruple system of order v, denoted by SQS(v), is an ordered pair (X, B), where
X is a set of cardinality v, and B is a set of 4-subsets of X , called blocks, with the property
that every 3-subset of X is contained in a unique block.

The necessary conditions for the existence of an SQS(v) are that v ≡ 2, 4 (mod 6) or
v = 1. When v < 4, the systems have no blocks, and when v = 4, it has one block. The
smallest interesting system, SQS(8), was known to Kirkman [12] in 1847. The unique (up to
isomorphism) SQS(10) was attributed to Barrau [1] as early as 1908 and to Richard Wilson
in [3]. Several infinite families of quadruple systems were constructed by Kirkman [12] and
by Carmichael [2]. The first complete proof for the existence of SQS(v) was given by Hanani
[4] in 1960.

Theorem 1.1 There exists an SQS(v) for all v ≡ 2, 4 (mod 6).

This result is proved by induction using six recursive constructions together with explicit
constructions of an SQS(14) and an SQS(38). Hanani also gave a more sophisticated proof of
the existence theorem for SQS(v) in [5], which relies on the construction of 3-wise balanced
designs and 3-analogs of group divisible designs (the concept is defined below). Apart from
Hanani’s two proofs, Hartman [6–8] and Lenz [13] used the existence of candelabra quadruple
systems (the concept is defined in Sect. 2) of type (g3 : s) with s ∈ {1, 2, 4, 8} to give a purely
tripling existence proof, which used only one type of construction and a small number of initial
designs: SQS(v) with v ∈ {8, 10, 14} and HQS(v : 8) with v ∈ {26, 28, 32, 34, 38, 40}. For
more information on Steiner quadruple systems, see the excellent survey paper by Hartman
and Phelps [10].

Let K be a set of positive integers. A group divisible 3-design of order v with block sizes
from K , denoted by GDD(3, K , v), is a triple (X, G, B) such that

(1) X is a set of v elements (called points);
(2) G = {G1, G2, . . . } is a set of nonempty subsets (called groups) of X which partition X ;
(3) B is a family of subsets (called blocks) of X , each of cardinality from K such that each

block intersects any given group in at most one point;
(4) every 3-subset T of X from three distinct groups is contained in a unique block.

The type of the GDD(3, K , v) is defined as the list (|G||G ∈ G). If a GDD has ni groups of
size gi , 1 ≤ i ≤ r , then we use an “exponential” notation gn1

1 gn2
2 . . . gnr

r to denote the group
type. When K = {k}, we simply write k for K . A GDD is called uniform if all groups have
the same size. Mills used H(n, g, 4, 3) design to denote the GDD(3, 4, ng) of type gn . In this
paper, we use H(gn1

1 gn2
2 . . . gnr

r ) to denote the GDD(3, 4,
∑

ni gi ) of type gn1
1 gn2

2 . . . gnr
r for

short.
For the existence of uniform H-designs, Mills [15] showed that for n > 3, n �= 5, an

H(gn) exists if and only if ng is even and g(n − 1)(n − 2) is divisible by 3, and that for
n = 5, an H(g5) exists if g is divisible by 4 or 6. Recently, Ji [11] improved these results
by showing that an H(g5) exists whenever g is even, g �= 2 and g �≡ 10, 26 (mod 48). We
summarize their results as follows.

Theorem 1.2 ([11,15]) For n > 3 and n �= 5, an H(gn) exists if and only if ng is even and
g(n − 1)(n − 2) is divisible by 3. For n = 5, an H(gn) exists when g is even, g �= 2 and
g �≡ 10, 26 (mod 48).

It is easy to see that the existence of an H(2n) implies that of an SQS(2n) by combining
every two groups of the H(2n) to form a quadruple as a new block. However, the existing
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A new existence proof for Steiner quadruple systems 67

proof for the existence of H(2n), which is the main content of Mills’ paper [15], is based
on the existence result of Steiner quadruple systems. The purpose of this paper is to provide
an alternative existence proof for Steiner quadruple systems via H-designs of type 2n . By
using the theory of candelabra systems and H-frames, we give a new existence proof for
H-designs of type 2n independent of the existence result of Steiner quadruple systems. As a
consequence, we also provide a new existence proof for Steiner quadruple systems.

2 Definitions and recursive constructions

In this section, we shall describe several recursive constructions for H-designs from cande-
labra systems and H-frames.

A candelabra t-system (or t-CS) of order v and block sizes from K , denoted by
CS(t, K , v), is a quadruple (X, S, �, A) that satisfies the following properties:

(1) X is a set of v elements (called points);
(2) S is an s-subset (called the stem of the candelabra) of X ;
(3) � = {G1, G2, . . .} is a set of non-empty subsets (called groups or branches) of X\S,

which partition X\S;
(4) A is a collection of subsets (called blocks) of X , each of cardinality from K ;
(5) every t-subset T of X with |T ∩ (S ∪ Gi )| < t , for all i , is contained in a unique block

of A, and no t-subset of S ∪ Gi , for any i , is contained in any block of A.

By the group type of a t-CS (X, S, �, A) we mean the list (|G||G ∈ � : |S|) of group
sizes and stem size. If a t-CS has ni groups of size gi , 1 ≤ i ≤ r and stem size s, then we use
the notation (gn1

1 gn2
2 . . . gnr

r : s) to denote the group type. Such a candelabra system will be
denoted by t-CS(gn1

1 gn2
2 . . . gnr

r : s). A candelabra system with t = 3 and K = {4} is called
a candelabra quadruple system and denoted by CQS(gn1

1 gn2
2 . . . gnr

r : s).
A CS(t, K , v) of type (1v : 0) (X, S, �, A) is usually called a t-wise balanced design and

briefly denoted by S(t, K , v). The stem and the group set are often omitted and we write a
pair (X, A) instead of a quadruple (X, S, �, A). It is well known that an S(3, {4, 6}, v) exists
if and only if v ≡ 0 (mod 2) [5].

The following is a construction for 3-CSs which is a special case of the fundamental
construction of Hartman [8].

Theorem 2.1 Suppose that (X, A) is an S(t, K ′, v) and ∞ ∈ X. Let K1 = {|A| : ∞ ∈ A ∈
A} and K2 = {|A| : ∞ �∈ A ∈ A}. If there exists a CS(3, K , t (k1 −1)+a) of type (tk1−1 : a)

for each k1 ∈ K1 and a GDD(3, K , tk2) of type tk2 for each k2 ∈ K2, then there exists a
CS(3, K , t (v − 1) + a) of type (tv−1 : a).

For non-negative integers q , g, k and t , an H(q, g, k, t) frame (as in [9]) is an ordered
four-tuple (X, G, B, F) with the following properties:

1. X is a set of qg points;
2. G = {G1, G2, . . . , Gq} is an equipartition of X into q groups;
3. F is a family {Fi } of subsets of G called holes, which is closed under intersections. Hence

each hole Fi ∈ F is of the form Fi = {Gi1 , Gi2 , . . . , Gis }, and if Fi and Fj are holes
then Fi ∩ Fj is also a hole. The number of groups in a hole is its size; and

4. B is a set of k-element transverses (called blocks) of G with the property that every
t-element transverse of G, which is not a t-element transverse of any hole Fi ∈ F is
contained in precisely one block, and no block contains a t-element transverse of any
hole, where a transverse is a subset of X that meets each Gi in at most one point.
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68 X. Zhang, G. Ge

In this paper, an H(q, g, k, t) frame is shortly denoted by HF(q, g, k, t). If an
HF(q, g, 4, 3) has ni holes of size mi + s intersecting on a common hole of size s,
i = 1, 2, . . . , r , then we denote such a design as HFg(m

n1
1 mn2

2 . . . mnr
r : s). It is clear

that an HF1(m
n1
1 mn2

2 . . . mnr
r : s) is just a CQS(mn1

1 mn2
2 . . . mnr

r : s). If an HF(q, g, 4, 3) has
only one hole of size s, then we call it an incomplete H-design of type (gq : gs), denoted by
IH(gq : gs).

Lemma 2.2 Suppose that (X, S, �, A) is a 3-CS(mn1
1 mn2

2 . . . mnr
r : s) and ∞ ∈ S. Let

K1 = {|A| : ∞ ∈ A ∈ A} and K2 = {|A| : ∞ �∈ A ∈ A}. If there exists an
HFg(tk1−1 : a) for each k1 ∈ K1 and an H((gt)k2) for each k2 ∈ K2, then there exists
an HFg((tm1)

n1(tm2)
n2 . . . (tmr )

nr : t (s − 1)+ a). Furthermore, if 4 ∈ K2, then the result-
ing HFg((tm1)

n1(tm2)
n2 . . . (tmr )

nr : t (s − 1) + a) contains a subdesign H(g4).

Proof Suppose (X, S, �, A) is the given 3-CS(mn1
1 mn2

2 . . . mnr
r : s) with group set � =

{G1, . . . , Gn}, where n = ∑r
i=1 ni . Define G ′

x, j = {x} × { j} × Zg . Let X ′ = ((X\{∞}) ×
Zt × Zg) ∪ ({∞} × Za × Zg), G′ = {G ′

x, j : x ∈ X \ {∞}, j ∈ Zt } ∪ {G ′∞, j : j ∈ Za},
F = {Fi : 0 ≤ i ≤ n}, where F0 = {G ′

x, j : x ∈ S\{∞}, j ∈ Zt } ∪ {G ′∞, j : j ∈ Za} and
Fi = {G ′

x, j : x ∈ Gi , j ∈ Zt } ∪ F0 for 1 ≤ i ≤ n.

For each B ∈ A and ∞ ∈ B, construct an HFg(t |B|−1 : a) on ((B\{∞}) × Zt × Zg) ∪
({∞} × Za × Zg) with group set {G ′

x, j : x ∈ B \ {∞}, j ∈ Zt } ∪ {G ′∞, j : j ∈ Za} and hole
set FB = {Fx : x ∈ B}, where Fx = {G ′

x, j : j ∈ Zt } ∪ F∞ with F∞ = {G ′∞, j : j ∈ Za}
being the common hole of size a. Denote its block set by CB .

For each B ∈ A and ∞ �∈ B, construct an H((gt)|B|) on B × Zt × Zg with group set
{{x} × Zt × Zg : x ∈ B}. Denote its block set by DB .

Let A′ = (
⋃

∞∈B,B∈A CB)
⋃

(
⋃

∞�∈B,B∈A DB). It is easy to check that (X ′, G′, A′, F)

forms an HFg((tm1)
n1(tm2)

n2 . . . (tmr )
nr : t (s − 1) + a) with F0 being the common hole

of size t (s − 1) + a.
Furthermore, if 4 ∈ K2, then there exists a block B0 = {a, b, c, d} ∈ A and ∞ �∈ B0. Now,

we construct an H((gt)4) on B0 × Zt × Zg with group set G′
B0

= {{x} × Zt × Zg : x ∈ B0}
as follows. First, we construct an H(t4) on B0 × Zt with group set {{x} × Zt : x ∈ B0}
and block set E . Next, for each E = {(a, i), (b, j), (c, k), (d, l)} ∈ E , construct an H(g4) on
E × Zg with group set {G′

a,i , G′
b, j , G′

c,k, G′
d,l} and block set UE . Then DB0 = ⋃

E∈E UE is the

block set of an H((gt)4) on B0 × Zt × Zg with group set G′
B0

. Thus, each UE forms the block

set of a subdesign H(g4) of the resulting HFg((tm1)
n1(tm2)

n2 . . . (tmr )
nr : t (s − 1) + a).


�
The following two constructions are modifications of the filling holes construction for

Steiner quadruple systems using candelabra quadruple systems.

Lemma 2.3 Suppose that there exists an HFg(m1
0mn1

1 mn2
2 . . . mnr

r : s). Let n = m0 +∑r
i=1 mi ni + s.

(1) If there exists an IH(gmi +s : gs) for each i = 1, 2, . . . , r , then there exists an IH(gn :
gm0+s). Furthermore, if there is an H(gm0+s), then there is an H(gn).

(2) Let ε = 0 or 1. If there exists an H(gmi +ε(gs − gε)1) for each i = 0, 1, 2, . . . , r , then
there exists an H(gn−s+ε(gs − gε)1).

Proof The proof of (1) is obvious. We only give the proof for (2). Let (X, G, B, F) be the
given HFg(m1

0mn1
1 mn2

2 . . . mnr
r : s). Let F0 = {G∞,1, G∞,2, . . . , G∞,s} be the common

hole. When ε = 0, for each hole F = {G1, G2, . . . , Gmi } ∪ F0 of size mi + s with i ∈
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A new existence proof for Steiner quadruple systems 69

{0, 1, 2, . . . , r}, construct an H(gmi (gs)1) on ∪G∈F G with group set {G1, G2, . . . , Gmi } ∪
{∪G∈F0 G} and block set AF . Then B ∪ (∪F∈F\{F0}AF ) is the block set of an H(gn−s(gs)1)

with group set {G ∈ F\F0 : F ∈ F} ∪ {∪G∈F0 G}. When ε = 1, for each hole F =
{G1, G2, . . . , Gmi }∪ F0 of size mi + s with i ∈ {0, 1, 2, . . . , r}, construct an H(gmi +1(gs −
g)1) on ∪G∈F G with group set {G1, G2, . . . , Gmi , G∞,1} ∪ {(∪G∈F0 G)\G∞,1} and block
set CF . Then B ∪ (∪F∈F\{F0}CF ) is the block set of an H(gn−s+1(gs − g)1) with group set
{G ∈ F\F0 : F ∈ F} ∪ {G∞,1} ∪ {(∪G∈F0 G)\G∞,1}. 
�

Now we give two tripling constructions and a doubling construction for H(2n). The two
tripling constructions are variations of those for SQS(v) proposed by Hartman in [6] and [7],
which will play a similar role to that of the tripling constructions of Hartman [6–8] and Lenz
[13] to deal with SQS(v). First, we need the following definitions and notations.

A regular graph (V, E) of degree k is said to have a one-factorization if the edge set E
can be partitioned into k parts E = F1|F2| . . . |Fk so that each Fi is a partition of the vertex
set V into pairs. The parts Fi are called one-factors.

For x ∈ Zn , we define |x | by x if 0 ≤ x ≤ n/2 and n − x if n/2 < x < n. For n ≥ 2 and
L ⊆ {1, 2, . . . , �n/2�}, define G(n, L) to be the regular graph with vertex set Zn and edge
set E given by {x, y} ∈ E if and only if |x − y| ∈ L .

The following lemma was proved by Stern and Lenz in [16].

Lemma 2.4 Let L ⊆ {1, 2, . . . , n}. Then G(2n, L) has a one-factorization if and only if
2n/gcd( j, 2n) is even for some j ∈ L.

For non-negative integers n and s ≥ 1, a simple pairing P(n, 2s) (as in [6]) consists of
four subsets �, R0, R1, R2 of Z6n+2s and three subsets P R0, P R1, P R2 of Z6n+2s × Z6n+2s

with the following properties for each i ∈ {0, 1, 2}:
(1) Cardinality and symmetry conditions

(a) |�| = 2s, |Ri | = 2n,
(b) � = −�.

(2) Partitioning conditions

(a) P Ri is a partition of Ri into pairs, thus |P Ri | = n,
(b) �, R0, R1, R2 is a partition of the set Z6n+2s , i.e., Z6n+2s = � ∪ R0 ∪ R1 ∪ R2.

(3) Pairing conditions
Let Li = {|x − y| : {x, y} ∈ P Ri },
(a) 3n + s /∈ Li ,
(b) |Li | = n,
(c) Gi = G(6n + 2s, {1, 2, . . . , 3n + s}\Li ) has a one-factorization.

Theorem 2.5 For each pair of integers n ≥ 0 and s ≥ 1, there exists a simple pairing
P(n, 2s) with the extra property that {0, 3n + s} ⊂ � and Gi has a one-factorization with
{{k, k + 3n + s} : 0 ≤ k ≤ 3n + s − 1} as one of the one-factors for each i ∈ {0, 1, 2}.
Proof For each pair of integers n ≥ 0 and s ≥ 1, a P(n, 2s) was constructed in [6, Theorem
3.3]. It is easy to check that {0, 3n + s} ⊂ �. The lengths Li of all P(n, 2s)s for each
i ∈ {0, 1, 2} are listed below:

Case (a) s = 1 and n even, or s ≥ 2.

L0 = {2 j : 0 < j ≤ �n/2� or n < j ≤ n + �n/2�},
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70 X. Zhang, G. Ge

L1 = {2 j : �n/2� < j ≤ n + �n/2�},
L2 = {2 j : 0 < j ≤ n}.
Case (b) n = 2k + 1, k ≥ 0 and s = 1.

L0 = {2 j : 0 < j ≤ k, 2k < j ≤ 3k + 1},
L1 = {2 j : k < j ≤ 3k} ∪ {1},
L2 = {2 j : 0 < j ≤ 2k} ∪ {1}.

Let G ′
i = G(6n + 2s, {1, 2, . . . , 3n + s}\(Li ∪ {3n + s})), i ∈ {0, 1, 2}. By Lemma 2.4,

each of G ′
i and G(6n + 2s, {3n + s}) has a one-factorization. Hence, Gi has a one-

factorization with {{k, k + 3n + s} : 0 ≤ k ≤ 3n + s − 1} as one of the one-factors for
each i ∈ {0, 1, 2}. 
�
Example 1 [6] Let n = 1 and s = 1. Construct a P(1, 2) on Z8 as follows:

� = {0, 4}, P R0 = {{3, 5}}, P R1 = {{1, 2}}, P R2 = {{6, 7}}.
Note that each of the graphs G0 = G(8, {1, 3, 4}), G1 = G(8, {2, 3, 4}) and G2 =
G(8, {2, 3, 4}) has a one-factorization with {{k, k + 4} : 0 ≤ k ≤ 3} as one of the one-
factors.

Theorem 2.6 There exists an HF2((3n + s)3 : s) with a subdesign H(24) for each pair of
integers n ≥ 0 and s ≥ 1.

Proof By Theorem 2.5, for each pair of integers n ≥ 0 and s ≥ 1, there is a simple
pairing P(n, 2s): �, Ri , P Ri , such that {0, 3n + s} ⊂ � and Gi has a one-factorization
F (1)

i |F (2)
i | . . . |F (4n+2s−1)

i with F (1)
i = {{k, k + 3n + s} : 0 ≤ k ≤ 3n + s − 1} for each

i ∈ {0, 1, 2}. Using this simple pairing, Hartman [6, Theorem 3.4] constructed a CQS((6n +
2s)3 : 2s) on the point set X = {ai : a ∈ Z6n+2s, i ∈ {0, 1, 2}} ∪ {∞1,∞2, . . . ,∞2s} with
three groups {{ai : a ∈ Z6n+2s} : i ∈ {0, 1, 2}} and a stem {∞1,∞2, . . . ,∞2s}, as well as
the block set B consisting of the following three parts:

δ = {{∞ j , (a + d)0, (b − d)1, (c + d)2} : a + b + c ≡ 0 (mod 6n + 2s),

d is the j th member of �, 1 ≤ j ≤ 2s},
ρ = {{(a + q)i , (a + t)i , bi+1, ci+2} : a + b + c ≡ 0 (mod 6n + 2s),

{q, t} ∈ P Ri , i ∈ Z3}, and

φ = {{ai , bi , ci+1, di+1} : {a, b} ∈ F (k)
i , {c, d} ∈ F (k)

i+1, 1 ≤ k ≤ 4n + 2s − 1, i ∈ Z3}.

Let

φ1 = {{ai , bi , ci+1, di+1} : {a, b} ∈ F (1)
i , {c, d} ∈ F (1)

i+1, i ∈ Z3}.
The desired HF2((3n +s)3 : s) will be on X with the group set G = {{ki , (k +3n +s)i } : 0 ≤
k ≤ 3n + s − 1, i ∈ {0, 1, 2}} ∪ {{∞i ,∞i+s} : 1 ≤ i ≤ s}, three holes {{ki , (k + 3n + s)i } :
0 ≤ k ≤ 3n + s −1}∪F0, i ∈ {0, 1, 2} and a common hole F0 = {{∞i ,∞i+s} : 1 ≤ i ≤ s},
as well as the block set B\φ1.

Since {0, 3n + s} ⊂ �, without loss of generality we may assume 0, 3n + s are the first
and the (s + 1)th elements of � respectively. Let

δ0 = {{∞ j , (a + d)0, (b − d)1, (c + d)2} : a + b + c ≡ 0 (mod 6n + 2s),

a, b, c ∈ {0, 3n + s}, d is the j th member of � and j = 1 or s + 1}.
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A new existence proof for Steiner quadruple systems 71

Note that δ0 ⊂ δ and δ0 forms the block set of an H(24) with the group set {{0i , (3n + s)i } :
i ∈ {0, 1, 2}} ∪ {{∞1,∞1+s}}. Hence, the above HF2((3n + s)3 : s) contains a subdesign
H(24). 
�
Example 1 (continued): Using the foregoing P(1, 2), we may construct a CQS(83 : 2) on
the point set X = {ai : a ∈ Z8, i ∈ {0, 1, 2}} ∪ {∞1,∞2} with three groups {{ai : a ∈ Z8} :
i ∈ {0, 1, 2}} and a stem {∞1,∞2}, as well as the block set B consisting of the following
three sets:

δ = {{∞1, a0, b1, c2}, {∞2, (a + 4)0, (b − 4)1, (c + 4)2} : a + b + c ≡ 0 (mod 8)},
ρ = {{(a + 3)0, (a + 5)0, b1, c2}, {(a + 1)1, (a + 2)1, b2, c0},

{(a + 6)2, (a + 7)2, b0, c1} : a + b + c ≡ 0 (mod 8)}, and

φ = {{ai , bi , ci+1, di+1} : {a, b} ∈ F (k)
i , {c, d} ∈ F (k)

i+1, 1 ≤ k ≤ 5, i ∈ Z3}.

Here, F (1)
i |F (2)

i | . . . |F (5)
i is a one-factorization of Gi with F (1)

i = {{k, k + 4} : 0 ≤ k ≤ 3}
for each i ∈ {0, 1, 2}. Let φ1 = {{ki , (k + 4)i , k′

i+1, (k
′ + 4)i+1} : 0 ≤ k, k′ ≤ 3, i ∈

Z3} ⊂ φ. The block set (δ ∪ ρ ∪ φ)\φ1 forms an HF2(43 : 1) on X with the group set
{{ki , (k + 4)i } : 0 ≤ k ≤ 3, i ∈ {0, 1, 2}} ∪ {{∞1,∞2}}, three holes {{ki , (k + 4)i } : 0 ≤
k ≤ 3}∪F0, i ∈ {0, 1, 2} and a common hole F0 = {{∞1,∞2}}. Furthermore, as a subset of
δ, δ0 = {{∞1, a0, b1, c2}, {∞2, (a + 4)0, (b − 4)1, (c + 4)2} : a, b, c ∈ {0, 4}, a + b + c ≡
0 (mod 8)} forms an H(24) with group set {{0i , 4i } : i ∈ {0, 1, 2}} ∪ {{∞1,∞2}}.

As a consequence of Theorem 2.6, we have our first tripling construction as follows.

Corollary 2.7 (Tripling Construction I) Let n ≡ 2s (mod 3) and s ≥ 1. If there exists an
IH(2n : 2s), then there exists an IH(23n−2s : 2n) and an IH(23n−2s : 2s). Furthermore, if
there exists an H(2n), then there exists an IH(23n−2s : 24) and an H(23n−2s).

Proof By Theorem 2.6, we have an HF2((n − s)3 : s) with a subdesign H(24). Filling in the
first two holes with an IH(2n : 2s), we obtain an IH(23n−2s : 2n) with a subdesign H(24).
Filling in an IH(2n : 2s) to this resultant IH(23n−2s : 2n), we obtain an IH(23n−2s : 2s).
Filling in an H(2n) instead, we obtain an H(23n−2s) with a subdesign H(24), which is also
an IH(23n−2s : 24). 
�
Theorem 2.8 There exists an HF2((3n)3 : s) for each pair of integers n, s such that 3n ≥
s ≥ 0.

Proof For each pair of integers n, s such that 3n ≥ s ≥ 0 and (n, s) �= (1, 1), the proof is
similar to that of Theorem 2.6. We may start from a particular CQS((6n)3 : 2s) and partition
the points of each group into disjoint pairs. Then, we can remove the blocks formed by all
the pairs from different groups. Such a CQS((6n)3 : 2s) was constructed by Hartman in
[7, Sect. 4] on X = {ai : a ∈ Z6n, i ∈ {0, 1, 2}} ∪ {∞1,∞2, . . . ,∞2s} with three groups
{{ai : a ∈ Z6n} : i ∈ {0, 1, 2}} and stem {∞1,∞2, . . . ,∞2s}, as well as the block set B
containing the following blocks:

φ = {{ai , bi , ci+1, di+1} : {a, b}∈F (k)
i , {c, d}∈F (k)

i+1, 1 ≤ k ≤ 6n − 1 − 2r − 2h, i∈Z3},

where F (1)
i , F (2)

i , . . . , F (6n−1−2r−2h)
i are disjoint partitions of pairs of Z6n for each i ∈

{0, 1, 2} and r , h are non-negative integers such that 6n = 2s + 2h + 6r .
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An HF2(33 : 1) can be constructed by applying Lemma 2.2 with a CQS(33 : 1) in [4] and
an H(24). 
�

As a consequence of Theorem 2.8, we have our second tripling construction as follows.

Corollary 2.9 (Tripling Construction II) Let n ≡ s (mod 3) and s ≥ 0. If there exists an
IH(2n : 2s), then there exists an IH(23n−2s : 2n) and an IH(23n−2s : 2s).

Theorem 2.10 (Doubling Construction) If there exists an H(2n), then there exists an H(22n).

Proof Let (X, G, B) be the given H(2n). Let F = {F1, . . . , F2(n−1)} be a one-factorization
of the multi-partite complete graph on X with partite set G. The desired H(22n) is based on
X ×{0, 1} with 2n groups G×{i}, G ∈ G and i ∈ {0, 1}. The block set is A = (B×{0, 1})∪C,
where C = {{(a, 0), (b, 0), (c, 1), (d, 1)} : {a, b}, {c, d} ∈ Fi , 1 ≤ i ≤ 2(n − 1)}. 
�

3 An alternative existence proof for H(2n)

In this section, we give an alternative existence proof for H(2n) with n ≡ 1, 2 (mod 3) and
n �= 5, which is mainly based on the recursive constructions listed in Sect. 2. The proof
is independent of the existence result of Steiner quadruple systems. Hence, we also give a
new proof for the existence of SQS(v) in the meantime. First, we need the following initial
ingredient designs.

Lemma 3.1 [5,14,15] There exists an H(2k) for each k ∈ {7, 11, 13}, an H(6k) for each
k ∈ {4, 6} and an IH(211 : 25).

Proof An H(27) can be found in [5]. An H(211), an H(213) and an IH(211 : 25) were con-
structed by Mills in [15]. An H(6k) for each k ∈ {4, 6} exists by [14, Lemma 7]. 
�

Lemma 3.2 There exists an H(225).

Proof We will construct an H(225) on X = Z25 × Z2 with the group set G = {Gi =
{(i, 0), (i, 1)} : i ∈ Z25}. First, we find a collection of 46 quadruples over Z25 by computer
search, such that each triple of Z25 occurs in exactly two quadruples when developed on Z25.
Second, for each element of Z25, we assign it a second coordinate, which is a linear function
of a and b with a, b ∈ Z2, such that for each triple {x, y, z} in Z25, the two occurrences
are mapped into eight different triples in {x, y, z} × Z2. The 46 quadruples with m ∈ Z25,
a ∈ Z2 and b ∈ Z2 are listed below.

(m, a) (m + 1, b) (m + 14, a) (m + 12, b)

(m, a) (m + 2, b) (m + 11, a + 1) (m + 13, b + 1)

(m, a) (m + 3, b) (m + 15, a) (m + 18, b)

(m, a) (m + 4, b) (m + 3, a) (m + 7, b)

(m, a) (m + 4, b) (m + 3, a + 1) (m + 7, b + 1)

(m, a) (m + 4, b) (m + 12, a + 1) (m + 17, b + 1)

(m, a) (m + 4, b) (m + 13, a + 1) (m + 16, b + 1)

(m, a) (m + 6, b) (m + 17, a + 1) (m + 14, b + 1)
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(m, a) (m + 6, b) (m + 21, a + 1) (m + 10, b + 1)

(m, a) (m + 7, b) (m + 24, a) (m + 8, b)

(m, a) (m + 11, b) (m + 5, a) (m + 16, b)

(m, a) (m + 11, b) (m + 5, a + 1) (m + 16, b + 1)

(m, a) (m + 14, b) (m + 4, a) (m + 18, b)

(m, a) (m + 17, b) (m + 19, a) (m + 23, b)

(m, a) (m + 4, b) (m + 13, a) (m + 9, a + b)

(m, a) (m + 10, b) (m + 2, a) (m + 20, a + b)

(m, a) (m + 10, b) (m + 4, a) (m + 5, a + b)

(m, a) (m + 11, b) (m + 8, a) (m + 14, a + b)

(m, a) (m + 19, b) (m + 1, a) (m + 3, a + b)

(m, a) (m + 19, b) (m + 10, a) (m + 12, a + b)

(m, a) (m + 20, b) (m + 12, a) (m + 17, a + b)

(m, a) (m + 23, b) (m + 14, a) (m + 24, a + b)

(m, a) (m + 2, b) (m + 15, a + 1) (m + 22, a + b)

(m, a) (m + 7, b) (m + 1, a + 1) (m + 19, a + b)

(m, a) (m + 8, b) (m + 23, a + 1) (m + 15, a + b)

(m, a) (m + 9, b) (m + 1, a + 1) (m + 18, a + b)

(m, a) (m + 18, b) (m + 15, a + 1) (m + 13, a + b)

(m, a) (m + 21, b) (m + 19, a + 1) (m + 17, a + b)

(m, a) (m + 23, b) (m + 1, a + 1) (m + 3, a + b)

(m, a) (m + 23, b) (m + 19, a + 1) (m + 2, a + b)

(m, a) (m + 15, b) (m + 21, a) (m + 20, a + b + 1)

(m, a) (m + 16, b) (m + 10, a) (m + 23, a + b + 1)

(m, a) (m + 16, b) (m + 13, a) (m + 21, a + b + 1)

(m, a) (m + 16, b) (m + 14, a) (m + 15, a + b + 1)

(m, a) (m + 17, b) (m + 13, a) (m + 22, a + b + 1)

(m, a) (m + 17, b) (m + 2, a) (m + 7, a + b + 1)

(m, a) (m + 22, b) (m + 8, a) (m + 19, a + b + 1)

(m, a) (m + 23, b) (m + 1, a) (m + 7, a + b + 1)

(m, a) (m + 7, b) (m + 21, a + 1) (m + 14, a + b + 1)

(m, a) (m + 7, b) (m + 24, a + 1) (m + 16, a + b + 1)

(m, a) (m + 13, b) (m + 10, a + 1) (m + 19, a + b + 1)

(m, a) (m + 15, b) (m + 14, a + 1) (m + 24, a + b + 1)

(m, a) (m + 16, b) (m + 10, a + 1) (m + 22, a + b + 1)

(m, a) (m + 20, b) (m + 2, a + 1) (m + 7, a + b + 1)

(m, a) (m + 24, b) (m + 4, a + 1) (m + 5, a + b + 1)

(m, a) (m + 24, b) (m + 11, a + 1) (m + 12, a + b + 1)


�
The following lemma is useful for us to unify the proofs following-up, which also provides

another proof for the existence of S(3, {4, 6}, v) with some small initial ingredients.

Lemma 3.3 For each integer n ≥ 3, there exists a CS(3, {4, 6}, 2n+2) of type (2n−2ε4ε : 2)

with ε = 0 or 1.

Proof For each integer n ≥ 3, it is sufficient to prove that there exists an S(3, {4, 6}, 2n + 2)

(X, A) such that the design has two particular points {x, y} ⊂ X with at most one block of
size 6 containing both of them.

For n = 3, 4, the conclusion is true since an SQS(2n + 2) exists. For n = 5, there exists
an S(3, {4, 6}, 12) with two disjoint blocks of size 6 partitioning the point set, which can be
obtained from a GDD(3, {4, 6}, 12) of type 26 [5, Lemma 1].

For n > 5, assume that the conclusion is true for each i , 3 < i < n. The proof proceeds
by induction.

Firstly, suppose that there exists an S(3, {4, 6}, n + 1) (X, A) with two particular
points {x, y} ⊂ X , such that there is at most one block of size 6 containing {x, y}.
Let F = {F1, . . . , Fn} be a one-factorization of the complete graph on X . Construct
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an S(3, {4, 6}, 2n + 2) on X × {0, 1} with block set B = (A × {0, 1}) ∪ C, where
C = {{(a, 0), (b, 0), (c, 1), (d, 1)} : {a, b} ∈ Fi , {c, d} ∈ Fi , 1 ≤ i ≤ n}. It is not diffi-
cult to check that there is at most one block of size 6 in B containing {(x, 0), (y, 0)}.

Secondly, suppose that there exists an S(3, {4, 6}, n +2) (X, A) with two particular points
{x, y} ⊂ X , such that there is at most one block of size 6 containing {x, y}. Take a point
∞∈ X\{x, y} and let X ′ =(X\{∞})×{0, 1}. For each block A ∈ A containing ∞, construct
a CS(3, {4, 6}, 2|A| − 2) of type (2|A|−1 : 0) on (A\{∞}) × {0, 1}. For each block A not
containing ∞, construct a GDD(3, {4, 6}, 2|A|) of type 2|A| on A × {0, 1}. When |A| = 6,
let A ×{0} and A ×{1} be the two special blocks of size 6 of the input GDD(3, {4, 6}, 12) of
type 26. By Theorem 2.1, we get a CS(3, {4, 6}, 2n + 2) of type (2n+1 : 0), which is actually
an S(3, {4, 6}, 2n + 2) on X ′. Here, the input CS(3, {4, 6}, 6) of type (23 : 0) contains only
one block of size 6. The input CS(3, {4, 6}, 10) of type (25 : 0) is actually an SQS(10)

which contains only blocks of size 4. Take the two points {(x, 0), (y, 1)} into consideration.
If {∞, x, y} determines a block of size 6 in A, then there is no block of size 6 containing
{(x, 0), (y, 1)}. If {∞, x, y} determines a block of size 4 in A, then there is only one block
of size 6 containing {(x, 0), (y, 1)}. 
�
Remark For n = 3, 4, 5, it is easy to check that each of the S(3, {4, 6}, 2n + 2)’s has blocks
of size four not containing the particular pair {x, y}. So does the S(3, {4, 6}, 2n + 2) with
n ≥ 3 by induction as in Lemma 3.3. Hence, there is at least one block of size four in the
resultant CS(3, {4, 6}, 2n + 2) for all n ≥ 3.

Lemma 3.4 There exists an H(2n) for all n ≡ 5 (mod 6), n ≥ 11 and an IH(2n : 24) for all
n ≡ 5 (mod 6), n ≥ 17.

Proof For n = 11, an H(211) exists by Lemma 3.1. For n = 17, applying Corollary 2.7 with
(n, s) = (7, 2) and an H(27) from Lemma 3.1, we obtain an IH(217 : 24) and an H(217).

For each n = 6m + 5, m ≥ 3, there exists a CS(3, {4, 6}, 2m + 2) of type (2m−2ε4ε : 2)

with ε = 0 or 1 by Lemma 3.3. By the Remark after Lemma 3.3, there exists a block of size
four, say B, in the block set of the CS(3, {4, 6}, 2m + 2). Take any point from the two stem
points and define it as the infinite point, which is outside of B. Then apply Lemma 2.2 with
an HF2(3k−1 : 2) and an H(6k) for k ∈ {4, 6} to obtain an HF2(6m−2ε12ε : 5) with a subde-
sign H(24). Applying Lemma 2.3 with an IH(211 : 25), an H(211) or an H(217), we get an
H(26m+5) with a subdesign H(24). Here, the input HF2(3k−1 : 2) comes from Theorem 2.8
or [17, Lemma 6.12], the input H(217) is constructed above, and the other ingredients are
from Lemma 3.1. 
�
Lemma 3.5 There exists an H(2n) for all n ≡ 7, 13 (mod 18) and n ≥ 7.

Proof For each n = 18k + 7 and k ≥ 2, we obtain an IH(2n : 24) by applying Corollary 2.7
with an IH(26k+5 : 24) from Lemma 3.4. Applying Lemma 2.3 with an H(24), we obtain an
H(2n). For n = 7, 25, the required designs exist by Lemmas 3.1 and 3.2.

For each n = 18k + 13 and k ≥ 1, there is an H(2n) by applying Corollary 2.7 with an
IH(26k+5 : 21) from Lemma 3.4. For n = 13, the required design exists by Lemma 3.1. 
�
Lemma 3.6 There exists an H(2n) for all n ≡ 1 (mod 18).

Proof For each n = 18k + 1 and k ≥ 1, the proof proceeds by induction. For k = 1, an
H(219) exists by applying Corollary 2.9 with an IH(27 : 21). When k > 1, suppose that there
exists an H(218i+1) for each i < k. By Lemma 3.5, we have that an H(26 j+1) exists for all
j < 3k. Applying Corollary 2.9 with an IH(26k+1 : 21), we get an H(218k+1). 
�
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Theorem 3.7 There exists an H(2n) for all n ≡ 1, 2 (mod 3) and n �= 5.

Proof Combining Lemmas 3.4–3.6, we obtain an H(2n) for each n ≡ 1, 5 (mod 6) and
n �= 5. By Theorem 2.10, we obtain an H(2m) for each m ≡ 2, 4 (mod 6) and m �= 10. An
H(210) can be obtained by applying Corollary 2.9 with an IH(24 : 21). 
�

As a consequence of Theorem 3.7, we have the following corollary.

Corollary 3.8 There exists an SQS(v) for all v ≡ 2, 4 (mod 6).

Proof The existence of SQS(v) with small orders of v = 4, 8, 10 was mentioned in Sect. 1.
Combining every two groups of an H(2n) to form a quadruple as a new block, we get an
SQS(2n) for each n ≡ 1, 2 (mod 3) and n ≥ 7. 
�

4 Concluding remarks

In this paper, we gave a new existence proof for Steiner quadruple systems by reestablish-
ing the existence of H-designs of type 2n based on the theory of candelabra systems and
H-frames. This new approach has been proved to be quite effective to deal with the existence
problems for optimal constant weight covering codes and nonuniform H-designs of types
2nu1 with u = 6, 8 [17]. We believe that the theory of candelabra systems and H-frames will
be proved useful for a complete solution of the general existence problem on H-designs of
type gnu1.
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